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How To Make Wavelets 


Robert S. Strichartz 

$1. INTRODUCTION. The French call them ondelettes, these new high-tech 
gadgets in the arsenal of harmonic analysis. Move over, Fourier! Your series and 
transforms are not the only game in town. Wavelet expansions enjoy a number of 
good properties not available in other types of expansions. To see this in the 
simplest context, consider a real-valued function f(x) on the interval [0, 11. You 
can expand it in a Fourier series 

m 

f ( x )  = b,, + (b, cos27~kx + a, sin27~kx) (1.1) 
1 

or you can expand it in a Haar function series 
m 2'-1 

where $(x) is the function defined by 

1 i f 0 s x < $  

-1 i f ; < x < l  

0 otherwise. 
(see FIGURE1). 

Figure 1. The graph of the generator of the Haar functions. 
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Both series are examples of expansions in terms of orthogonal functions in 
L2(0,1). Thus there are simple formulas for the coefficients. (Exercise: Show that 
{$(2jx - k)} are orthogonal, but not normalized.) But the Fourier series is not 
well localized in space; if you are interested in the behavior of f (x)  on a 
subinterval [a ,  b] you need to involve all the Fourier coefficients. On the other 
hand, the Haar series is very well localized in that to restrict attention to the 
subinterval [a,  b] you need only take the sum in (1.2) over those indices for which 
the interval Ijk= [2-jk, 2-j(k + I)] (the support of ~ ( 2 j x  - k)) intersects [a,  bl. 
Furthermore, the partial sums of the Haar series (summing 0 Ij 5 N)clearly 
represents an approximation to f taking into account details on the order of 
magnitude 2-N or greater. These two properties, localization in space, and scaling, 
are the hallmarks of wavelet expansions. In addition, the Haar functions are 
created out of a single function 4 by. dyadic dilations and integer translations. 
Essentially the same property is shared by all the wavelet bases we will discuss, and 
may in fact be taken as an approximate definition of a wavelet expansion. 

The wavelet expansions we are going to construct can be thought of as 
generalizations of the Haar series, in which the function $ is replaced by smoother 
cousins. Before we can say exactly what properties we want these functions to 
have, and how we can go about constructing them, it is useful to backtrack and see 
exactly how the Haar functions arise. It will turn out to be easier if we consider the 
whole line as the domain of our functions. 

$2. THE ROUGH-AND-READY HAAR WAVELETS. We begin with the function 
cp = characteristic function of the unit interval [O,l]. surely this is one of the 
simplest functions one can imagine, but i.t is chosen because it has two important 
properties: 

(i) the translates of cp by integers, cp(x - k), k E Z, form an orthonormal set 
of functions for L2(lW); 

(ii) cp is self-similar. If you cut the graph in half then each half can be expanded 
to recover the whole graph. This property can be expressed algebraically by the 
scaling identity 

We will call cp the scaling function. (In the French literature it is sometimes 
called "le pkre" and rC, is called "la mhre," but this shows a scandalous misunder- 
standing of human reproduction; in fact the generation of wavelets more closely 
resembles the reproductive life style of an amoeba.) In fact, the scaling identity 
essentially determines cp up to a constant multiple (exercise). The significance of 
the scaling identity is the following: Let Vodenote the linear span of the functions 
cp(x - k), k E Z (or by abuse of notation the closure in L'(R) of this span, 
C;= -,akcp(x - k)  with C lak1 ' < a).This is a natural space to consider in view of 
(i), since the functions cp(x - k)  form an orthonormal basis for Vo. Of course Vo is 
not all of L', it is the subspace of piecewise constant functions with jump 
discontinuities at Z. We can get a larger space by rescaling. Let (1/2)Z denote the 
lattice of half-integers k/2, k E Z, and let Vl denote the subspace of L2 of 
piecewise constant functions with jumps at (1/2)Z. It is clear that f (x)  E Vo if and 
only if f(2x) E V1, and the functions 21/2cp(2x - k)  form an orthonormal basis for 
Vl (the factor 2''' is thrown in to make the normalization 1121/2cp(2~ - k)1I2 = 1 
hold). The scaling identity (2.1), or rather its translated version 
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says exactly Vo c V,, since a basis for Vo Is explicitly represented as linear 
combinations of basis elements of V,. (Of course the containment Vo c Vl is clear 
from the description of the spaces Vo and V, in terms of locations of jump 
discontinuities, but in the generalizations to come there will be no such simple 
description; however, there will be a scaling identity.) 

The whole story can now be iterated, both up and down the dyadic scale. 
The result is an increasing sequence of subspaces 5 for j E Z, where I.;. consists 
of the piecewise constant L2 functions with jumps at 2-jZ, and the( functions 
2jl2cp(2jx - k )  for k E Z form an orthonormal basis for I.;.. We can pass back and 
forth among the space I.;. by rescaling: f (x )  E I.;. if and only if f(2,-jx) E Vk, and 
the scaling identity (2.11, suitably rescaled, says I.;. c Vk if j I k. The sequence {I.;.} 
is an example of what is called a multiresolution analysis. There are two other 
properties of {I.;.}that are significant, namely 

and 

U I.;. is dense in L2 
j e Z  

(exercise). 
In view of (2.3) it would seem tempting to try to combine all the orthonormal 

bases {2jl2cp(2jx - k)} of I.;. into one orthonormal basis for L2(R). But look, 
although I.;. _c I.;.,,, the orthonormal basis {2j/2cp(2j~ - k)} for I.;. is not contained 
in the orthonormal basis {2(i+1)/2cp(2j+1~- k)} for ?+,. (Indeed, there are 
distinct elements in the two orthonormal bases that are not orthogonal to each 
other.) So our first naive attempt to obtain an orthonormal basis for L2([W) is 
flawed. Can we fix it up? 

Back to the drawing boards! Since Vo c V, and we have an orthonormal basis 
for Vo of the form { ~ ( x  - k)}, why don't we try to complete an orthonormal basis 
of Vl by adjoining functions of the form {$(x - k)} for some function $? This is 
the same thing as asking for an orthonormal basis of the desired form for the 
orthogonal complement of Vo in V,, which we denote Wo, so Vl = Vo @ Wo 
(Hilbert space direct sum). 

The answer is easy: we want to take $ exactly to be the Haar function generator 
defined in $1. Note that $ can be expressed in terms of cp by 

which is very reminiscent of the scaling identity. Exercise: show that {$(x - k)} 
forms an orthonormal basis for mo.But now we can rescale the space Wo, so 

and { 2 ~ / ~ $ ( 2 J x  - k)}, ,,is an orthonormal basis for 4..If we combine conditions 
(2.2), (2.3) and (2.5) we obtain 

and since the spaces y. are all mutually orthogonal we can now refine our naive 
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attempt and combine all the orthonormal bases for y. into one grand orthonormal 
basis {2jl24(2jx - k)Jj,,, ,,, for L2(IW). (The only change is that we have 
replaced the scaling function cp by the wavelet $.) This gives the Haar series basis 
for the whole line. There is a minor variation on this theme that is perhaps more 
closely related to the Haar expansion on the unit interval: instead of (2.6) we can 
also write 

and then cdmbine the basis {cp(x - k)}, ,,for Vo with the bases {2j/2$(21/2~ -
k)} ,,,for W, with j 2 0, to obtain an orthonormal basis for L~(Iw). 

53. MULTIRESOLUTION ANALYSIS. The moral of the story so far is that we 
first want to build 	a scaling function cp and associated multiresolution analysis 

. c V - ,  c Voc V, c . . before constructing the wavelets. 

Definition. A multiresolution analysis c V- c Voc Vl c . . with scaling 
function cp is an increasing sequence of subspaces of L ~ ( R )  satisfying the following 
four conditions: 

(i) (density) U jy is dense in L2([W), 
(ii) (separation) n ,I.;. = (01, 

(iii) (scaling) f (x)  E 4e f(2-jx) E Vo 
(iv) (orthonormality) {cp(x - k)}, ,,is an orthonormal basis for Vo. 

It follows easily from the definition that.{2j/2cp(2jx - y)}, ,,forms an orthonor- 
ma1 basis for I.;.. Since cp E Voc Vl we must have 

for some coefficients a(y) satisfying 

and in fact 

Equation (3.1) is the analogue of (2.11, and we will refer to it as the scaling identity. 
It follows from the definition that the scaling function determines the multireso- 

lution analysis, but not conversely. A more difficult question is how to characterize 
those functions cp which are scaling functions for a multiresolution analysis. Here 
we expect the scaling identity to play a crucial role, but before we can say more we 
need to examine certain algebraic conditions on the coefficients a(y) that follow 
from the definition. 

First, there is a consistency condition that arises from (iv) and (3.1). We know 
from (iv) that 

-
(Kronecker 6). If we use (3.1) to substitute for cp(x - y)  and p ( x )  in (3.4) we 
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obtain 

after the change of variable x + 2-lx and use of (3.4). We rewrite this as 

Note that (3.5) contains (3.2) as a special case. 
Another algebraic condition arises if we assume cp is integrable and lcp(x) d* # 0 

(if lcp(x) d* = 0 then the same is true for all functions in all T.;., so we would not 
expect to have the density condition (9). Then we integrate (3.1) and make a 
change of variable to obtain 

hence 

Now we would like to reverse the procedure. Step I will be to produce solutions 
a(y) to the algebraic identities (3.5) and (3.6). Step 2 will be to define the scaling 
function via the scaling identity (3.1). Notice that (3.1) says that cp is a fixed point 
of the linear transformation 

so it is reasonable to try to construct cp by iterating S, 

cp = lim Snf 
n+m 

for some reasonable initial function f .  In a later section we will discuss another 
method for solving (3.1). Step 3 will be to prove that the function cp that solves 
(3.1) (normalized so llcp112 = 1) generates a multiresolution analysis. This is the 
trickiest step, because there are simple counterexamples to show that it is not 
always true (try a(y) equal to 1 for y = 0,3, and otherwise a(y) = 0, and 
cp = X[0,31, which violates (iv)). Nevertheless, many choices of a(y) do yield a 
multiresolution analysis. The difficult condition to verify is the orthonormality (iv), 
and we will have to postpone the discussion of when and why this holds to a later 
section. In Box 1we will show how to establish the density (i) and separation (ii), 
given orthonormality and the additional normalization condition 

Now we are ready to move on to Step 4, which is the construction of the 
wavelets themselves. 
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Proofs of Density and Separation 

Lemma B1.l. Let V, be any subspace of ~ ~ ( i F 8 )which is contained in LW(LW) 
and which has the property that 

I l f  \ I m  Icllf 112 for all f E V,. (B1.1) 

Define T.; by the scaling conditiofi (iii) ( n o  assumption of the sort I.;. c + , is 
necessary). Then ( i i )  holds. 

Proof: The scaling condition and a simple change of variable transforms 
(B1.l)  into 

l l  f l l m  5 ~ m ~ / ~ l lf 1 1 2  for all f E y .  (B1.2) 

If f E n1/; then (B1.2) holds for all j, and letting j + -a we obtain 
1 1  f / I r n  = 0 hence f = 0. Q.E.D. 

The estimate (B1.1) is easy to obtain in our case. For simplicity assume cp 
is bounded and has compact support, which will be the case in all our 
examples. Then by the orthonormality (iv) we have 

where K ( x ,  y )  = C,,,cp(x - y)cp(y - y ) ,  so 

and C ,  ,,lq(x - y)12 is uniformly bounded (of course much weaker condi- 
tions on c p ,  such as rapid decrease will also imply this). 

Lemma B1.2. Assume cp has compact support and satisfies (3.1) and (3.9), and 
the orthonormality condition (iu).  Then the density condition ( i )  holds. 

Sketch of Proof: Let 4f ( x )  = 2jC,,,cp(2ix - y) / f (y)cp(2Jy- y )  dy denote 
the orthogonal projection onto 7. We need to show limj,, f = f i n  L2 for all 
f E L ~ ,  = 1 1  f 1 1 ;  by the Pythagorean theo- which is equivalent to limj,ml14 f 1 1 ;  
rem. It suffices to prove this for f = x,, A any interval, by a density argument. 
B u ~l l~ , x~ l l$  - - 1 2 

= 2iC,ez(,cp(2iy y )  dy2 = 2 - j ~ , , ~ l  / i A q ( y  y )  dy . For 
large j, 2'A will be a large interval, so essentially either 12iAcp(y- y )  dy = 0 if 
y 6C 2jA  or l,,,cp(y - y )  dy = 1 if y E 2jA  by (3.9)(for y in a small neighbor- 
hood of the boundary of 2jA  this is not quite correct, but in the limit we can 
ignore this detail). Thus I I P ~ ~ , ~ ~ ' ; = 2-i#{y E 2 j ~ }= length(A) = I l x A l l ~  and 


I in the limit this becomes equality. Q.E.D. 1 


Notice that we could essentially reverse the argument to deduce the 
necessity of the normalization condition (3.9). 
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$4. THE WAVELETS. We will consider the scaling function cp to be the first 
element cp = $r0 of a pair of functions $,, $1, with being the wavelet generator. 
We would like the functions ($,(x - ,,,y)}, ,=,,, 
 to be an orthonormal basis for 
V,. Since the functions (cp(2x - y)}, ,,already form an orthogonal basis for Vl, 
the functions $,(x) and $,(x) must be linear combinations of cp(2x - y), so they 
must satisfy an identity 

which generalizes (3.1) (of course a,(y) = a(y)). Notice that for k = 1 (4.1) is an 
explicit formula, there is nothing to solve. But what kind of conditions should we 
put on the coefficients ak(y)? The same reasoning that led to (3.5) leads to 

On the other hand, the condition lcp(x) & f 0 is not something we can expect to 
hold for $, (think of the example of Haar functions), so conditions (3.6) can only 
be recopied in our new notation 

Lemma 4.1. If {cp(x - y)},, ,is an orthonormal set and if aj(y) satisfy (4.2) and 
(4.3) then {$,(x - y)},, ,, is an orthonormal set. 

Proof: It suffic.es to show 

Now 

But the integral is (1/2)6(y1, 2y  - y") by the orthonormality of cp(x - y )  so (4.4) 
reduces to (4.2). Q.E.D. 

Remark. We have omitted the justification of the interchange of series and 
integrals, but in most of the examples we will look at the series are actually finite 
sums. 

Thus {$,(x - Y)}yEL, is an orthonormal set of functions in Vl. Is it a 
basis? (A kind of pseudo dimension counting argument makes this very plausible.) 
To show that it is a basis it suffices to represent each function cp(2x - T) as a 
linear combination, and we know the coefficients will have to be 
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Thus we need to show that 

is equal to cp(2x - ?). But if we substitute (4.1) into (4.5) we obtain 

so it suffices to show 

for ? = 0 or 1. 

Lemma 4.2. (4.6) always holds, hence 14k(x  - Y ) } ~ ,r, k = o ,  1 is an orth~mrmal basis 
for Vl. 

Although this is a purely algebraic statement, we postpone the proof until the 
next section. 

Theorem 4.3. Suppose cp generates a multiresolution analysis and a k ( y )  
satisfy (4.2) and (4.3) with $, defined by (4.1) and $, = cp .  Then the functions 
{ 2 j / 2 $ 1 ( 2 j ~- y )}  for j E Z, y E Z form an orthonormal basis of L2(E4). 

Proof: As before,'let W o  denote the orthogonal complement of Vo in Vl, Vl = 

Vo@ W,. We claim { q ! ~ ~ ( x- Y)} ,, is an orthonormal basis for W,. This follows 
because we have merely taken the basis for V l  given by Lemma 4.2 and removed 
{$,(x - Y)} ,, which is a basis for Vo.By scaling we obtain 

and 

{ 2 j / 2 $ 1 ( 2 j ~- Y ) j Y € Z  

is an orthonormal basis for ?.But 

L 2 ( R )  = $ y 
j c Z  

by the density condition. Q.E.D. 

As a simple variation on the theme, which we leave as an exercise to the reader, 
the set of functions {q4x - y ) }  for y E Z together with {2i/2$1(2ix - y ) )  for 
j 2 0, y E Z form an orthonormal basis of L2(Ft).The advantage of this variant is 
that we scale only to finer and finer resolutions ( j  + +m) and take care of all the 
coarser resolutions ( j  < 0) by the single family { p ( x  - y)}, ,Z. 

In summary, we have reduced the construction of wavelets to the solution of the 
algebraic identities (4.2) and (4.3), modulo some technical conditions to ensure the 
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orthonormality condition (iv). Step 5 will be to actually produce the solutions to 
(4.2) and (4.31, and Step 6 will be to establish various properties of the wavelet 
functions: regularity, decay at infinity, and moment conditions. 

The reason we have postponed some of the details in the construction so far is 
that they require a new technique. So it is now time to open the door and invite 
Fourier back in. 

$5. THE VIEW FROM THE FOURIER TRANSFORM SIDE. Suppose we take the 
Fourier transform of everything in sight. Because most of our identities have a 
convolutional structure, we expect a simplification, with multiplicative identities 
arising in their place. Before doing so, let us return to the orthonormality question, 
because here the Fourier transform viewpoint gives us an entirely new handle on 
the problem. Given cp E L ~ ,how can we tell from I$ whether or not {cp(x - y)}, ,, 
is orthonormal? 

It will simplify matters if we adapt the convention (as in [SW]) that 

so that the Fourier inversion formula is just 

a x )  = cp( -XI 
and the Plancherel formula is 

llcpll2.= llI$ll2 

(warning: not all the references follow this convention!). 

Lemma 5.1. {q(x - y)}, ,,is an orthonormal set if and only if 

Proof: By the Plancherel formula, {p(x - y)}, ,,is orthonormal if and only if 

But the integral over R can be broken up into an integral over [0, 11and a sum over 
Z.Since e2"'5y is periodic we obtain 

which means that the function C, ,,I$([ + y)12 on [0, 11 has as Fourier coeffi- 
cients O), hence must be the constant function given by (5.4). Q.E.D. 

Now the scaling identity (4.1) transcribes easily into the condition 

Ck(5) = ~ k ( ; 5 ) + ( ; 5 )  (5.6) 

where 
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(exercise, using the definition of the Fourier transform and a change of variable). 
Notice that A,(.$) is smooth and periodic. Then (4.3) says 

and (3.9) says 

By iterating (5.6) for k = 1 (remember 4, = cp) we obtain the infinite product 
representation 

m 

(using (5.8) we can justify the local uniform convergence of the infinite product). 
Substituting (5.10) back into (5.6) we obtain 

Thus the functions A, completely and explicitly determine the wavelets. 
The most intricate part of the transcription process is the identity (4.2) that the 

coefficients ak(y)  must satisfy. What does this tell us about the functions A,? 
Rather than deal with this question directly (try it as an exercise, after the fact) we 
repeat the process which led to (4.2)-namely the consistency of (4.1), alias (5.61, 
with the orthonormality, alias (5.4). In other wops,  if {cp(x - y)}, ,,is orthonor- 
ma1 then (5.4) must hold, and if (5.6) defines I),then we want the analogue of 
(5.4), namely 

Now let T ,  = 0 and 7, = 1/2. These are representations of the cosets of the 
subgroup Z in (1/2)Z. Then points of the lattice Z can be represented uniquely as 
2(y + T,) as y varies in Z and p = 1,2. Then 

by the above parametrization of Z,and if we substitute (5.6) and use the 
periodicity of A, we obtain 

The inner sum over Z yields the constant 1, and so (5.12) yields the consistency 
condition 

This is the Fourier transform equivalent of (4.2). Note that (5.13) implies 

IAk(s>l  -< (5.14) 

which implies the boundedness of the Fourier transforms $,. 
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We can now easily supply the missing proof of Lemma 4.2. Notice that (5.13) 
says that for every (, the 2 x 2 matrix {A,((  + q p ) }is unitary by rows. But 
this is equivalent to being unitary by columns, 

Now substituting (5.7) into (B2.1) we obtain 

Regarding this as an identity between Fourier series expansions we can 
equate coefficients to conclude 

Choosing q ,  = 0 and summing over q we obtain (4.6) for T = 0 since 

C2 
e-2vi~'v,,= 2 if y' E 2 2  

q= 1 0 otherwise. 

Similarly, choosing q, = 1 / 2 ,  multiplying by e2"'vg and summing over q we 
obtain (4.6) for = 1. 

The time has.come to grasp the bull by the horns and prove the orthonormality 
of { p ( x  - y)}, ,,directly. For this we will need an additional hypothesis. 

Theorem 5.2. Suppose 

A , ( [ )  + 0 for 151 1 $. 
Then { p ( x  - y)},,,, is orthonormal. 

Proof: We construct a sequence of functions c p j  such that {cpj(x- y)}y, ,  is 
orthonormal, and such that pj -+ cp in L~ norm as j -+ m. For po we simply take 
$,([> = x,- Then - r)}y,,is orthonormal by Lemma 5.1 because 
(5.4) has exactly one non-zero term. 

Inductively define functions pj by 

We claim that {cpj(x- y)}, ,,is again orthonormal. This follows immediately from 
(5.13)with j = k = 0 and Lemma 5.1. It can also be deduced from 

which is the non-Fourier transform version of (5.16), and (4.2). Note that 

so that Gi -,$ pointwise, by (5.10). 
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We would like to show cpj -, cp in L' norm. This will suffice to complete the 
proof, because the norm limit of orthonormal sets is an orthonormal set. This is 
the key point of the proof, where the non-vanishing hypothesis must be used. (As 
an interesting exercise, see how the argument breaks down for the counterexample 
given in $3.) 

By the Plancherel formula it suffices to show @j-t in L2 norm, and since we 
have pointwise convergence we would like to use the dominated convergence 
theorem. Note first that 4 E L2 by Fatou's theorem, since it is the pointwise limit 
of 4j and 114j112= 1. Thus we can use a multiple of 4 as a dominator. By 
comparing (5.18) and (5.10) we see 

0 otherwise. 

We claim that 4 is bounded from below on [ - 1/2,1/21. The point is that 4 is 
continuous, and by (5.15) Ao(2-j5) + 0 for 151 5 1/2. ~ h u s  4 doesn't vanish on 
[ - 1/2,1/2], so IGj(5)l 5 c14(5)1 for c = ( i n f ~ - l ~ 2 , 1 ~ 2 1 ~ @ ~ ) - 1 .  Q.E.D. 

$6. THE RECIPE. So now we have indicated all the major steps in the construc- 
tion, but we have left the first to last. We need to find actual solutions to the 
algebraic identities (5.8, (5.13) and (5.15). There are several different approaches 
to this problem. We describe one that is due to Ingrid Daubechies [Dl]. 

We look for solutions with only a finite number of a,( j / )  different from zero, 
which means A,(,$) are trigonometric polynomials. This implies that the scaling 
function cp and wavelet have compact support. This can be seen most easily 
from the iteration procedure (3.7) and (3.8). Say a(y) = 0 unless y E [0, Nl; then 
if f has support in [0, N], so does Sf. 

We concentrate first on finding the function A,, which must satisfy three 
conditions: 

A,(O) = 1 (6.1) 

A , ( ( )  l 2  + /A,(( + + ) I 2  = 1 (6.2) 

A,(() + 0 for 151 s 4 (6.3) 

(here (6.1) is (5.8), (6.2) is (5.13) for j = k = 0 and (6.3) is (5.15)). And, of course, 
A ,  must be of the form 

1 
A,(,$) = - ao(y)e2"i~5 (finite sum). (6.4)

2 y e z  

Note that I A , ( ~ ) ( '  is then of the same form. 
Now we already know one solution, namely 

which yields the Haar wavelets. 'This was deemed unsatisfactory because the 
wavelets are not continuous. One way to create continuity and even differentiabil- 
ity is to take convolution powers, or on the Fourier transform side to take ordinary 
powers. Thus we are tempted to try A,(() = (eTitcosn o Nfor some large N. 
Unfortunately (6.2) no longer holds, but we can fix this up. Note that cos T(( + 
1/21 = -sin n t ,  so that is why lcos .rr5I2+ I cos 7r(5 + 1/2)12 = 1. 
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Now take the identity cos2 rr( + sin2 rr( = 1 and raise it to an odd power, say 

= cos"' rr( + 5 cos8 rr( sin2 r r t  + 10 cos6 rr( sin4 rr( 

+ 10 cos4 rr( sin6 rr( + 5 cos2 rr( sin8 r r t  + sin" r r t .  

Take the first half of the terms for IA,,I2, 

1 A,,(<) l 2  = cosIO r r t  + 5 cos8 r r t  sin2 r r t  + 10 cos6 r r t  sin4 r r t .  (6.5) 

Replacing '( by ( + 1/2 turns these into the second half of the terms, so (6.2) is 
automatic, and (6.1) and (6.3) are easy. This gives a recipe for producing I A , ~ ~ ,  and 
it remains to take a square root of the form (6.4). We would also like to take the 
coefficients a,,(y) in (6.4) to be real, for that will yield a real-valued scaling 
function (and in the end real-valued wavelets as well). There is a general theorem 
of F. Riesz that asserts that this is possible, but in this case it is easy enough to 
accomplish by trial and error. Since 

we can take 

A,([) = (eTitcos r r [ )3 ( cos2~ t  - i'iF sin2 r r t  + iJ5 + 2 m  cos r r t  sin 716) 

which is clearly of the form (6.4) with a,,(y) real and a,(y) # 0 only if -1Iy I 4. 
To complete the story we need to find A,( ( ) , also of the form (6.4), which 

satisfies 

and 

~o(()A,(5) + A,)(( + ;)A,(( + ;) = 0 ((j.8) 

(these are the remaining conditions of (5.13)). Fortunately, this can be accom-
plished just by taking 

which amounts to setting 

a , (y)  = ( - l ) Y + l a , ( l  - y ) .  (6.10) 

Then (6.7) and (6.8) follow directly from (6.2) and the periodicity of A,. Note also 
that a , (y)  are real valued if a,,( y )  are. 

The Fourier transform of I), is given by (5.11), which now reads 
m 

; ,(t)  = A,(+() n ~ , ( 2 - j t )  (6.11)
j = 2  

with A,, given by (6.6) and A ,  by (6.9). If we want to obtain the wavelet I), itself 
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rather than its Fourier transform we first find 4,= cp by iterating the mapping 

s f ( x )  = & o ( Y ) f ( 2 x  - 7 )  (6.12) 
Y 

starting with any reasonable f satisfying J f ( x )dx = 1, and then setting 

h ( x )  = C ~ I ( Y ) ~ ( ~ XY ) .  (6.13)-
Y 

See FIGURES 2 and 3. 

-4 -3 -2 - 1 0 1 

Figure 2. The graph of the scaling function cp, courtesy of David Aronstein. 

Figure 3. The graph of the wavelet generator $,, courtesy of David Aronstein 
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There is an alternative approach to constructing the scaling function that 
yields a different wavelet basis. It has the advantage of requiring less algebra, 
but the disadvantage of producing wavelets that are not compactly supported. 
Start with the Haar basis scaling function xro, whose Fourier transform is 
eTi5(sin rr(/rr(), and take the N-fold convolution product 

g = X[O,II* X[o,11* ' ' ' * X[o, 11 ( N factors) 

so that 

sin rr5 N 

It is easy to see that g E c N - I ,  but of course we have destroyed the 
orthonormality of translates by Z that xro, had. Too bad, but this is easily 
fixed. Write 

and observe that. h is periodic and 

Then we have only to take 

and (5.4) is automatic, so we have the orthonormality of {cp(x - y)},,,. 
Notice that t(O) = 1and g(y) = 0 for y f. 0 so $0) = 1as required. And it 
is not difficult to show that cp E cN-I. 

What about the scaling identity? Well, it certainly holds for g, namely 

where 

has the required form (6.4). It then follows that 

where 

Now A,, is periodic, so it must have the form (6.41, but the sum is no longer 
finite. This is where we lose the compact support of cp. On the other hand A, 
is clearly smooth, so the Fourier coefficients in (6.4) must be rapidly decreas- 
ing, which implies that cp is rapidly decreasing. 

The construction of A,([) and the wavelet Fourier transform J,(() then 
proceeds via (6.9) and (6.11) as before. 
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$7. SMOOTHNESS OF WAVELETS. How smooth are our wavelets? Since we 
understand them best on the Fourier transform side, we will use the principle that 
decay at infinity of 6 implies smoothness of cp (we will establish smoothness of the 
scaling function and pass it on to the wavelets via (6.13)). For example, it is easy to 
show 

implies cp E CN.SO how do we establish (7.1)? 
We have the infinite product representation (5.10) which says 

m 

and A ,  is periodic. Since each factor does not decay at infinity, why should the 
product? This is a mystery, which is best solved by looking at the simplest case, 
A,(,$) = cos .rrt.Then 

m n cos 2 - k ~ t= -
sin .rrt 

k = l  7 5  
does decay at the rate O(1tl -I) .  (Formula (7.3) was proved by Euler, but special 
cases were known by Francois Viste in the late 1500's. You can prove it by 
considering the Fourier transform of ,y- ,/,, and its scaling properties.) 

Clearly, for most choices of 6, the values of cos 2 -ka6  will occasionally become 
small, and that makes the product (7.3) small. You might try to get around this by 
taking 5 = 2N for large N. Thus cos 2 - k a t  = f1 for k = 1, . . . ,N, so there is no 
decay, but then c 0 s 2 - ~ - l a t  = 0 wipes you out. You can try to quantify this 
line of reasoning, but there is no great payoff in showing,, for example, that 
sin a(/.rrt = O ( I ~ \ - ~ / ~ ) ,SO we will take (7.3) as our starting point. 

The expression (6.6) for A,, or any of its more complicated cousins, contains 
COST[ as a factor, many times. Thus $([) contains sin .rrt/t as a factor many 
times, hence we expect decay. Unfortunately, the other factor grows. It is easier to 
work with IAOl2 given by ( 6 3 ,  if we remember to take the square root at the end. 
We have, for the special case considered, 

I A,([) = (COS T ~ ) ~ ( c o s ~  l 2  .rrt+ 5 cos2 at sin2at + 10 sin4 a t ) .  

The first factor produces decay 0(1t1-6). The second factor can be written 
1 + 3 sin2 .rrt + 6 sin4 a( so it clearly has a maximum value 10 at 6 = 1/2. We can 
obtain a crude estimate for the growth rate produced by the second factor by the 
following reasoning: if 161 = 2N then there will be about N factors where 2-k 1 61 is 
large, so an upper bound for the product is a constant times ION. But ION = Itla 
for a = log lO/log 2 = 3.32. So the growth rate is at most 0 (  1(13.32) SO the 
combination gives 0 (  151-2.68) for 1 $([)I hence O(151 for 6( t ) .  

This is a disappointing estimate. According to (7.1) it suffices only to show that 
p is continuous. It can be improved, but not by a lot. To see why, consider 
6 = 2N/3. Then for each of the N factors 2-k( = 2N-k/3, 1 s k s N, we have 
1 + 3 sin2 2N-k ~ / 3  + 6sin4 2N-k.rr/3 = 1 + 3 + ( 0 / 2 ) '  + 6 ( 6 / 2 ) 4  = 6.625 so 
a lower bound for a is log6.625/log2 which yields 0(1(1 as the optimal 
improvement. 

If we consider the family of wavelets constructed as outlined in $6, we will have 
I A , ( ~ ) I ~written as the product of higher and higher powers of cos .rrt by more and 
more complicated second factors. Thus we have faster decay times faster growth in 
$((), Which wins? Well, it is a close race! It turns out that the decay wins, but the 
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Figure 4. The graph of $, after factoring out a power of sin r r x / r x ,  courtesy of Prem Janardhan and 
David Rosenblum. 

crude method of estimating the growth used above is not good enough to show 
this. The final result ([Dl], [C2]) is that to create wavelets of class CNwe need to 
carry out the construction starting with (cos2 IT.$ + sin2kOM= 1 for M on the 
order of 5(N + 1). This means that there is a rather high price to pay in terms of 
complexity (the algebra required to pass from I A , ~ ~ to A,, for example) in order 
to gain a moderate amount of smoothness. (More recently, better techniques have 
been found to estimate the smoothness directly, without involving the Fourier 
transform [DL].) FIGURE 4 shows the graph of @(8). See [JRS] for a discussion of 
the surprising self-similarity properties of this function. 

In addition to smoothness, another important property of wavelets is the 
vanishing moment conditions 

m 

1-xkt,bl(x)dx=O, k = 0 , 1 ,  . . . ,N (7.4) 
m 

which are equivalent to the vanishing of the Fourier transform to high order at the 
origin, 

In contrast to smoothness, however, it is only the wavelet, not the scaling function, 
which enjoys this property. The significance of this condition is that it implies a 
weak form of localization in the frequency (Fourier transform) variable, since the 
Fourier transform of t,b1(2jx - k) is mainly concentrated around values of 161 on 
the order of 2'. (There is yet another family of wavelets in which the Fourier 
transform is actually supported in an annular region cl2j  I 161 I c22j. See [MI 
for a description of these "Littlewood-Paley" type wavelets.) For our wavelets the 
verification of (7.5) is easy. From (6.11) we see that 4, has a factor A1((1/2)5), 
and from (6.9) we see that A, at 8 = 0 has the same order zero as A, at 8 = 1/2. 
But A, has a factor of cos IT( to a power, hence vanishes at .$ = 1/2 to order 3 in 
our particular example, and to order M if we start with (cos2 ITX + sin2 T X ) ~  1= 

in our construction. Note that in general conditions (6.1) and (6.2) imply that 
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A o ( 1 / 2 )  = 0, and the flatter we make A, near 6 = 0, the more it vanishes near 
c$ = 1/2 .  

$8. CONCLUDING REMARKS. Why not try to create your own designer wavelets 
by programming the recipe given in 56, and taking the square root of I A , ( ( ) ~ ~in a 
different way? For a more detailed discussion of the Riesz Lemma for doing this 
see [Dl]. 

For further information about wavelets, including historic accounts and attribu- 
tion of results, see the books [MI, [BF], [BC] or the expository lectures [D2] and 
[FJW]. The term "wavelet" is also used to describe expansions in terms of 
functions which are not orthogonal. These wavelets have a simpler algebraic 
description, which is useful for some applications. An expanded version of this 
article, including a discussion of wavelet bases in several variables, will appear in 
[BF]. None of the theorems or proofs presented here are original; I have only tried 
to organize the material in a way that is easy to digest. 
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